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Attila Felingera,∗, Alberto Cavazzinib, Francesco Dondib

a Department of Analytical Chemistry, University of Veszprém, Egyetem utca 10, H-8200 Veszprém, Hungary
b Department of Chemistry, University of Ferrara, via L. Borsari 46, I-44100 Ferrara, Italy

Received 4 February 2004; received in revised form 26 May 2004; accepted 28 May 2004

Abstract

The microscopic model of chromatography is a stochastic model that consists of two fundamental processes: (i) the random migration of
the molecules in the mobile phase, and (ii) the random adsorption–desorption of molecules on the stationary phase contained in a chromato-
graphic column. The diffusion and drift of the molecules in the mobile phase is described with a simple one-dimensional random walk. The
adsorption–desorption process is modeled by a Poisson process that assumes exponential sojourn times of the molecules in both the mobile
and the stationary phases. The microscopic, or molecular model of chromatography studied here turns out to be identical to the macroscopic
lumped kinetic model of chromatography, whose solution is well known in chromatography. A complete equivalence of the two models is
established via the identical expressions they provide for the band profiles.
© 2004 Elsevier B.V. All rights reserved.
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1. Introduction

Chromatographic processes are usually described with
macroscopic models. Very often this consists in formulating
a proper differential mass balance equation that describes the
physico-chemical processes of chromatography with a de-
sired detail[1,2]. The chromatographic band profiles are ob-
tained via the integration of the mass balance equations. The
mass balance models usually assume instantaneous equilib-
rium between the mobile and the stationary phases or use
kinetic rate constants to characterize the resistance to mass
transfer or adsorption–desorption.

The microscopic—or stochastic—models, on the other
hand, depict the chromatographic processes at a molecular
level via the random migration of the molecules along the
chromatographic column.

Statistical or stochastic approaches have always offered
a successful alternative to model chemical kinetics[3]. The
stochastic model of chromatography was introduced by Gid-
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dings and Eyring[4]. In their model, they assumed that while
migrating along the column, a molecule performs a ran-
dom number of adsorption and desorption steps character-
ized by a Poisson distribution. Furthermore, once a molecule
is adsorbed on the stationary phase, the time spent until
desorption—the sojourn time—is a random variable, too.
This latter random variable follows an exponential distribu-
tion. A significant effort has been devoted to the extension of
the stochastic model to heterogeneous surfaces in the 1960s,
but the handling of the problem in time domain resulted in
rather complex expressions, inadequate for practical calcu-
lations[5,6].

de Clerk et al.[7] and Weiss[8] used the master equation
to develop the stochastic model of chromatography. Their
models result in an asymmetrical chromatographic elution
profile on a finite-length column, with a limiting Gaussian
distribution at sufficiently long times.

In the field of chemical engineering, the stochastic ap-
proach was used to determine residence time distributions
in systems governed by dispersion[9,10].

The characteristic function (CF) approach remarkably fa-
cilitates the use of the stochastic model of chromatogra-
phy [11,12]. The use of CF facilitated the extension of the
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stochastic theory to two-site[13] or to generic multiple-site
heterogeneous surfaces[14] that are very complex to handle
otherwise[4,15,16]. Thus, the CF approach of the stochas-
tic theory is able to model the band profile that is due to any
unimodal or multimodal distribution of sorption energies.
The stochastic model was further extended to describe the
effect of mobile phase dispersion and size exclusion effects
as well[17–19].

By means of the CF method, closed form expressions
are obtained in Fourier domain for the band profiles, thus
the statistical moments can directly be calculated even if
the transformation into time domain is possible numerically
only [20].

The stochastic model of nonlinear chromatography was
developed via Monte Carlo simulations[21] and it was
demonstrated that the Monte Carlo model of nonlinear chro-
matography is equivalent to the macroscopic kinetic model
of Thomas[22].

The dispersion in the mobile phase is very often neglected
in the stochastic models. In some studies the contribution
of the mobile phase dispersion was modeled simply with a
Gaussian distribution[11,23,17]or by first-passage density
calculated from the diffusion equation[15].

In this study, we make a distinction between destructive
and nondestructive detectors to provide a versatile descrip-
tion of the mobile phase process. The former one is mod-
eled by the first passage distribution, the latter one with the
diffusion equation.

There have been some attempts to compare the micro-
scopic and the macroscopic models of chromatography. Usu-
ally this is restricted to the comparison of the first and the
second moments. Cavazzini et al. showed that the number
of theoretical plates calculated by either the microscopic or
the macroscopic kinetic models of chromatography agree
as long as the mobile phase dispersion is neglected[14].
Felinger et al. considered the mobile phase dispersion by a
Gaussian peak and proved that the first and the second mo-
ments of the stochastic–dispersive and the lumped kinetic
models are identical[17].

In the different fields of science, there is a countless num-
ber of cases in which one physical system is modeled in
significantly different ways[24]. These models are based
on different physical descriptions of the problem (accord-
ing to the author’s preference) and need proper mathemat-
ical tools to be handled. When a consistent set of initial
hypotheses is assumed, equivalence between different mod-
els is evidently expected, even though there may be no ap-
parently immediate or obvious connection between them.
Nevertheless, any model has its specific peculiarities that
make it a unique tool for the understanding of the described
phenomena.

This appears particularly so in the case of chromatog-
raphy, for which the effort of a unifying description be-
tween macroscopic and microscopic models is far from
being complete. On the other hand, in our opinion, a
microscopic–stochastic description of the chromatographic

process will in the future provide a notably powerful tool
to interpret the information gathered by new frontiers of
chromatographic separations (such as separation at micro
and nano level, sensoristic approach, etc.[25–28]).

In this study, we introduce a stochastic–dispersive model
of chromatography and compare that model with the lumped
kinetic model of chromatography. From a physical–chemical
point of view, these models are of very similar complex-
ity. Both models characterize the homogeneous adsorption
and desorption processes by rate constants or—what is
equivalent—with average residence times. Furthermore,
both models describe the mobile phase dispersion with one
axial dispersion coefficient. The fundamental difference
between the models relies in the modeling approach. The
microscopic model is built up by a first passage distribution
arising from a 1-D discrete random walk, accompanied by
a random sequence of adsorption events (this latter is char-
acterized by a Poisson process). The macroscopic model is
obtained by solving a partial differential equation.

The aim of the present manuscript is two-fold:

(i) The mobile phase dispersion is considered by a
one-dimensional random walk and by the first pas-
sage time distribution arising from the random walk.
When combined with the stochastic process of
adsorption–desorption, this approach leads to a rather
general stochastic representation of the chromato-
graphic process.

(ii) Furthermore, we show that not only the first and the sec-
ond moments but also the whole peak shape obtained
with the microscopic and the macroscopic models stud-
ied here are identical. The model developed here is ab-
solutely equivalent to the lumped kinetic model, thus
the link between the macroscopic (mass-balance based)
model and the microscopic (random walk) model is fully
established.

The anonymous referees of the present work do not think
that the microscopic and macroscopic models we compare
in this study are fundamentally different in nature, because
the two models use similar parameters and they model the
chromatographic process in the same depth. In our opin-
ion, however, the uniqueness of the microscopic model is
not only in the level of the physical detail but also in the
exact probabilistic structure of the stochastic process. It is,
of course, well known that when 1-D diffusion is mod-
eled at the microscopic level by the independent random
movement of the molecules, the solution becomes iden-
tical to the Fick equations derived from the macroscopic
model [24]. The chromatographic process is much more
complicated than diffusion with drift, and the proper mod-
eling of the adsorption–desorption process is essential. It
is indeed expected that some equivalence should exist be-
tween microscopic and macroscopic models as macroscopic
models can be regarded as ensemble averaged microscopic
models.
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2. Theory and results

We first focus on the mobile phase process and then con-
sider that molecules adsorb on the stationary phase. We as-
sume that molecules diffuse at random in the mobile phase
and this random diffusion is accompanied by a drift of con-
stant velocity.

2.1. The random walk model of diffusion with drift

Let us assume that on a one-dimensional grid a parti-
cle steps at discrete times between sites.Pn(k) denotes the
probability that the particle is at positionk after n steps.
We assume that the wandering particles have no memory,
the steps are uncorrelated and independent. We imagine that
the length of one step is one. The probability that the par-
ticle steps to the right isp, whereas a step to the left has
the probability ofq = 1 − p. Whenp = q = 1/2, we have
a pure diffusion without drift. Otherwisep �= q implies a
convection.Pn(k) can be expressed as:

Pn(k) = pPn−1(k − 1) + qPn−1(k + 1) (1)

When the random walk starts, the particle is at the origin,
i.e. P0(0) = 1 andP0(k) = 0 for anyk. After one step, the
probability that the particle is atk is

P1(k) = pP0(k − 1) + qP0(k + 1) (2)

Eq. (2) yields P1(1) = p, P1(−1) = q and P1(k) = 0
for other values ofk. The probabilityPn(k) is the sum of
n random quantities. The sum of random numbers can be
conveniently calculated by means of the CF. The CF of the
random variableX is the expectationE{eiξX}, whereξ is an
auxiliary variable andi is the imaginary unit. The CF of a
random variable and the probability density function of the
random variable form a Fourier transform pair.

The CF of a unit shift iseiξ, therefore the CF ofP1(k) is:

P1(ξ) = peiξ + qe−iξ (3)

The CF of the final probabilityPn(k) aftern random steps is:

Pn(ξ) = (peiξ + qe−iξ)n = e−iξn(pe2iξ + q)n (4)

To calculate the probability density function fromPn(ξ), we
recall that the CF of the binomial distribution:

P(n, k) =
(

n

k

)
pkqn−k (5)

has the form of

P(n, ξ) = (peiξ + q)n (6)

Utilizing this property, and recalling the time-shift and scal-
ing theorems of Fourier transform1 we obtain the following

1 The time-shift theorem states that the term frequency-domain term
eiξn represents a shift byn in the time domain. The scaling property ex-
presses that iff(t) andF(ω) are a Fourier pair, thenf(at) andF(ω/a)/|a|
are also a Fourier pair.

binomial distribution for the position of the wandering par-
ticle aftern steps:

Pn(k) = 1

2

(
n

(n + k)/2

)
p(n+k)/2q(n−k)/2 (7)

The mean and the variance of the binomial distribution of
Eq. (5) are np and npq, respectively. The moments of the
distribution of Eq. (7) can be calculated from the deriva-
tives of the CF (Eq. (4)). We obtain that the mean and the
variance aren(p − q) and 4npq, respectively. The binomial
distribution ofEq. (7)can be approximated by the following
Gaussian equation whenn is sufficiently large:

pn(k) = 1√
8πnpq

e−[k−n(p−q)]2/8npq (8)

We assume that the time between successive steps isτ. Thus,
the total time of the random walk ist = nτ. The rate of drift
can be calculated asu = (p− q)/τ. We define the diffusion
coefficient as one half of the rate of variance increase in
time:

D = 1

2

dσ2
x

dt
(9)

where symbolσ2
x illuminates the fact that a 1-D model has

been used. Since the variance isσ2
x = 4npq = 4tpq/τ,

the diffusion coefficient isD = 2pq/τ. When the distance
between neighboring grid points is∆, the length of one step
is also∆ and the distance of pointk from the origin isz =
k∆. Introducing all these definitions inEq. (8), we have the
following probability density function:

p(z, t) = 1√
4πDt

exp

[
− (z − ut)2

4Dt

]
(10)

Eq. (10)gives the probability that a diffusing particle is atz

at timet. AlthoughEq. (10)was derived assuming discrete
time and length, the same expression is obtained for the case
of a random walk in continuous time and length.

When both the time and the length are continuous vari-
ables, the following partial differential equation (PDE) can
be written for the probability that a particle is at positionz

at timet [29,30]:

∂p(z, t)

∂t
= −u

∂p(z, t)

∂z
+ D

∂2p(z, t)

∂z2
(11)

The solution of this mass balance equation is given in
Eq. (10)when assuming the same initial condition, i.e. that
the molecule is at the origin att = 0: p(z,0) = δ(z).

We recall that the distribution inEq. (10)gives the prob-
ability that at timet the particle is at a distancez from the
origin. Thereforep(z, t) includes those particles too which
wandered to a longer distance thanz and diffused back-
ward toz. In chromatography,p(L, t) gives the band profile
recorded with a nondestructive detector. For instance, with
UV detection in HPLC, a molecule might diffuse back to
the detector cell, just after it has left the cell.
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If we want to know when a particle reached positionz

for the first time, we have to calculate the first passage time
distribution. This second scenario will give the band profile
with a destructive detector, such as the flame ionization de-
tector. In destructive detectors, the molecule is destroyed as
soon as it enters the detector cell, therefore it is not pos-
sible that one molecule is detected twice due to backward
diffusion. This distinction, in theory, gives different band
profiles. In the practice, however, the difference between the
band profiles calculated by the two approaches is completely
negligible and experimentally cannot be measured.

In Appendix A, the most important peak shape parameters
are summarized for nondestructive detectors.

2.2. First passage time

We are interested in calculating the first passage distri-
bution f(z, t), i.e. the probability that the first passage of
a particle through a positionz > 0 will occur betweent
andt+dt [31,32]. This positionz in chromatography corre-
sponds exactly to the column outlet. The first passage time
in a one-dimensional continuum can be calculated with the
following convolution integral[29]:

p(z, t) =
∫ t

0
f(z, τ)p(0, t − τ)dτ (12)

In Laplace domain, the above equation simplifies to

p̃(z, s) = f̃ (z, s)p̃(0, s) (13)

where

p̃(z, s) =
∫ ∞

0
p(z, t)e−stdt (14)

The Laplace transform ofp(z, t) (Eq. (10)) is

p̃(z, s) = 1√
4Ds + u2

exp
[ z

2D
(u −

√
4Ds + u2)

]
(15)

We can calculatẽf(z, s) by means ofEq. (13)and we obtain

f̃ (z, s) = exp
[ z

2D
(u −

√
4Ds + u2)

]
(16)

For the density function given inEq. (10)we get the fol-
lowing expression for the first passage time after the inverse
Laplace transform ofEq. (16):

f(z, t) = z√
4πDt3

exp

[
− (z − ut)2

4Dt

]
(17)

It is interesting to note that bothp(z, t) andf(z, t) are so-
lutions of Eq. (11). We obtainf(z, t) as the solution of
Eq. (11) with different boundary conditions:p(z,0) = 0
andp(0, t) = δ(t). Furthermore, whenf(z, t) is obtained as
the solution of the diffusion equation, the first passage time
distribution is alsof(z, t) itself. For the column outlet we
obtain the following first passage time distribution:

f(t) = L√
4πDt3

exp

[
− (L − ut)2

4Dt

]
(18)

When we introduceNd = Lu/(2D) to account for the mobile
phase dispersion andt0 = L/u for the dead time of the
column,f(t) becomes:

f(t) =
√

Ndt0

2πt3
exp

[
−Nd

2

(t − t0)
2

t0t

]
(19)

The CF off(t) is

φm(ω) = exp

[
Nd

(
1 −

√
1 − 2iωt0

Nd

)]
(20)

2.3. The microscopic kinetic model

We assume that, as it migrates along the column, the
molecule adsorbs and desorbs at random. The number of
adsorption–desorption steps is given by a Poisson distribu-
tion:

pk = e−knk

k!
(21)

wheren is the mean number of sorption steps. The CF of
the Poisson distribution is:

φk(ω) =
∑
k

pke
ikω = en(e

iω−1) (22)

The sojourn time in the stationary phase during one adsorp-
tion step is given by an exponential distribution:

fs(t) = e−t/τs

τs
(23)

whereτs is the average sojourn time. The CF offs(t) is

φs(ω) = 1

1 − iωτs
(24)

When the surface of the stationary phase—and thus the
adsorption–desorption kinetics—is homogeneous, every ad-
sorption step of each molecule is characterized byfs(t). The
residence time in the stationary phase of a molecule that un-
dergoesk adsorption steps is the sum ofk random numbers
that follow the exponential distribution offs(t). That sum
can be calculated as thek-fold convolution offs(t), or al-
ternatively as the product ofk CFsφs(ω). The fraction of
the molecules that adsorbsk times ispk.

Thus the CF of the residence time in the stationary phase
can be expressed as:

φS(ω) =
∑
k

pkφ
k
s (ω) (25)

Recalling the identityxk = ek ln x, we can reexpressEq. (25)
as:

φS(ω) =
∑
k

pke
(−i)ik ln φs(ω) (26)

Remembering the definition ofφk in Eq. (22), we can write
Eq. (26)as:

φS(ω) = φk[−i ln φs(ω)] (27)
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The substitution ofEqs. (22) and (24)into Eq. (27)gives:

φS(ω) = exp(n[φs(ω) − 1]) = exp

(
n

1 − iωτs
− n

)
(28)

This is the CF of the residence time in the stationary phase.
For a constant mobile phase velocity, when there is no mo-
bile phase diffusion, the effect of the mobile phase is simply
an increase of the elution time byt0, which is expressed via
the CF as:

φR(ω) = φS(ω)eiωt0 = exp

[
t0

τm
(φs(ω) − 1) + iωt0

]
(29)

Dondi et al. have shown that the effect of the mobile
phase dispersion on the retention time can be handled
in the same manner as the effect of the nonconstant
adsorption–desorption steps on the stationary phase time
[33]. On the analogy ofEq. (27), the following expression
is written for the CF of the retention times:

φR(ω) = φm[−i ln φr(ω)] (30)

whereφr is a normalized retention time, such as thatφ
t0
r =

φR, i.e. recallingEq. (30)we will have:

φr(ω) = exp

{
1

τm
[φs(ω) − 1] + iω

}
(31)

When we combineEqs. (20), (30) and (31), the CF of the
total retention time becomes:

φR(ω) = exp

[
Nd

(
1 −

√
1 − 2

Nd

(n[φs(ω) − 1] + iωt0)

)]

(32)

and sinceφs(ω) = 1/(1− iωτs), φR (Eq. (24)) is written as

φR(ω) = exp

[
Nd

(
1 −

√
1 − 2iω

Nd

(
nτs

1 − iωτs
+ t0

))]

(33)

Eq. (33) is the CF of the probability density function of
the elution time of the individual molecules. Thus, the band
profile can be obtained directly fromEq. (33) by inverse
Fourier transform.

The moments of the band profile are calculated rather
simply making use of the moment theorem of the Fourier
transform. The first moment of the peak about the origin is:

µ1 = t0 + nτs (34)

The second central moment is

µ′
2 = 2nτ2

s + (t0 + nτs)
2

Nd

(35)

Since the stochastic models gives the corrected retention
time in the form oft′R = nτs and the retention time astR =
t0 + nτs, we can write the second central moment as:

µ′
2 = 2(t′R)2

n
+ t2R

Nd

(36)

By means of the moments we can calculate the inverse of
the column efficiency as:

1

N
= µ′

2

µ2
1

= 2

n

(
t′R
tR

)2

+ 1

Nd

(37)

or

1

N
= 2

n

(
k′

k′ + 1

)2

+ 1

Nd

(38)

The skew is given by the following equations:

S = 3√
nNd

n2(k′ + 1)3 + 2nNdk
′2(k′ + 1) + 2N2

dk
′3

[n(k′ + 1)2 + 2Ndk′2]3/2
(39)

In the above derivation we expressed the moments with the
use of conventional chromatographic terms. We can, how-
ever, express the moments and other characteristics with the
terms of the microscopic process to better reflect how the
mean number of adsorption steps and the mean time needed
for one step influence the retention time and band broaden-
ing:

µ1 = nτt (40)

µ′
2 = 2nτ2

s + n2τ2
t

Nd

(41)

1

N
= 1

Nd

+ 2

n

(
τs

τt

)2

(42)

where τt = τs + τm is the total mean time of one
adsorption–desorption step. The height of a theoretical plate
is calculated as:

H = N

L
= 2D

u
+ 2u

τm

(
1

τm
+ 1

τs

)−2

(43)

The skew can be expressed as

S = 3√
nNd

n2τ3
t + 2nNdτ

2
s τt + 2N2

d τ
3
s

(nτ2
t + 2Ndτ2

s )
3/2

(44)

Eq. (38)suggests that with the here derived stochastic ki-
netic model of chromatography and with the lumped kinetic
model we have very similar expressions for the number of
theoretical plates. For this reason, we seek further analogies
between the microscopic and the macroscopic models.

2.4. The macroscopic lumped kinetic model

There are several kinetic models of various level of
sophistication to model chromatography[1,34–36]. The
conventional lumped kinetic model is a well-known, thor-
oughly investigated model of linear chromatography[37].
We summarize here briefly the solution of the so-called
reaction-dispersive lumped kinetic model. This model con-
sists of a mass balance equation and a kinetic rate equation.
The mass balance equation is written as:

∂c(z, t)

∂t
+ F

∂q(z, t)

∂t
+ u

∂c(z, t)

∂z
= D

∂2c(z, t)

∂z2
(45)
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whereF = (1 − ε)/ε is the phase ratio,ε being the total
porosity.

The reaction-dispersive model attributes the nonequi-
librium state to the slow adsorption desorption process,
while the transport-dispersive model assumes that the
adsorption–desorption is fast, but the mass transfer kinetics
is slow. In linear chromatography, these models are equiva-
lent. In the reaction-dispersive model, the mass balance is
described byEq. (45), and the rate of concentration change
in the stationary phase is given by the following first-order
kinetic equation:

∂q(z, t)

∂t
= kac(z, t) − kdq(z, t) (46)

whereka andkd are the rate constants for the adsorption and
desorption processes, respectively.

The boundary conditions describe an infinitesimally nar-
row injection of unit area atz = 0 and at timet = 0:
c(z,0) = 0 andc(0, t) = δ(t). The differential equation can
conveniently be solved by Laplace transform. The Laplace
transform ofEqs. (45) and (46)are, respectively:

sc̃(z, s) + Fsq̃(z, s) + u
dc̃(z, s)

dz
= D

d2c̃(z, s)

dz2
(47)

and

sq̃(z, s) = kac̃(z, s) − kdq̃(z, s) (48)

Eqs. (47) and (48)can be combined by eliminating̃q(z, s)
and we arrive at the following ordinary differential equation:

s

(
1 + Fka

s + kd

)
c̃(z, s) + u

dc̃(z, s)

dz
= D

d2c̃(z, s)

dz2
(49)

With the boundary condition of an impulse injection,
c̃(0, s) = 1, we have the following solution:

c̃(z, s) = exp

[
zu

2D

(
1 −

√
1 + 4Ds

u2

(
1 + Fka

kd + s

))]

(50)

When we setz = L, and introduceNd = Lu/(2D) to ac-
count for the mobile phase dispersion andt0 = L/u for the
dead time of the column, we obtain the Laplace transform
of the band profile as:

c̃(s) = exp

[
Nd

(
1 −

√
1 + 2t0s

Nd

(
1 + Fka

kd + s

))]
(51)

We can further modifỹc(s) by considering the definition of
the mass transfer units:Nm = Fkat0 = k′kdt0:

c̃(s) = exp

[
Nd

(
1 −

√
1 + 2s

Nd

(
Nm/kd

1 + s/kd
+ t0

))]
(52)

The first moment of the band profile is calculated by the
differentiation ofc̃(s):

µ1 = t0

(
1 + Fka

kd

)
= t0

(
1 + k′) (53)

beingk′ = Fka/kd . The second central moment is:

µ′
2 = 2t0k′

kd
+ t20

Nd

(
1 + k′)2 (54)

which can be reexpressed as

µ′
2 = 2(t′R)2

Nm

+ t2R

Nd

(55)

From the first two moments, we can express the inverse of
the plate number:

1

N
= 2

Nm

(
k′

k′ + 1

)2

+ 1

Nd

(56)

2.5. Comparison of the microscopic and the macroscopic
models

The comparison ofEqs. (38) and (56)demonstrates that
the plate numbers calculated by either the microscopic or the
macroscopic are identical only ifNm = n. Thus we can con-
clude that thenumber of mass transfer units in the macro-
scopic and theaverage number of adsorption–desorption
steps are synonymous expressions.

Not only the moments of the two models are identical, but
also the band profiles calculated by either the microscopic
or the macroscopic approach are completely equivalent. To
show this, we compare the CF of the microscopic (Eq. (33))
and the Laplace transform of the macroscopic (Eq. (52))
band profiles. The following three points should be consid-
ered forφR(ω) and c̃(s) to see that they represent totally
identical band profiles:

1. The desorption rate constantkd expresses the probability
of one desorption event per unit time, thus it must be the
reciprocal of the average adsorption timeτs, i.e. evidently
1/kd = τs.

2. The number of mass transfer units equals the mean num-
ber of adsorption steps, i.e. as we have already shown:
Nm = n.

3. From the definition of the CF and that of the Laplace
transform, we can conclude that thes = −iω relationship
must exist between the arguments ofc̃ andφR.

Recalling these three substitutions, we can state that the
microscopic kinetic model of chromatography is completely
identical to the well known macroscopic, lumped kinetic
model.Eq. (33)derived via the CF andEq. (52)derived in
the Laplace domain give totally identical band profiles.

Note the two models use similar parameters to character-
ize the kinetics of the adsorption–desorption process and in
both models the mobile phase dispersion is modeled with
an axial dispersion coefficient. This similarity, however does
not guarantee that the band profiles predicted by the two
models will be identical. Besides the parameters character-
izing the kinetics of the adsorption–desorption process and
the axial dispersion coefficient, the structure of the micro-
scopic model is rather unique and the stochastic-dispersive
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model is equivalent to the lumped kinetic model only if we
assume exponential distribution for the sojourn times (τs and
τm) and Poisson distribution for the number of adsorption
events. Without these details, the microscopic model will not
be equivalent to the macroscopic lumped kinetic model. If,
for instance, we had assumed that every molecule undergoes
the same number of adsorption events, we would have ob-
tained a completely different microscopic model that could
not be made equivalent to the lumped kinetic model but it
could be compared to the Martin–Synge plate model[12].

Therefore, the uniqueness of the microscopic model con-
sists in both the level of the physical detail and the proba-
bilistic structure of the stochastic process.

2.6. Neglecting the contribution of mobile phase

The stochastic model of Giddings and Eyring[4] is a sim-
plified case of the stochastic–dispersive model considered
here. In their approach, the contribution of the mobile phase
was ignored, the stationary phase process was considered
in that model only. The mobile phase process has two ef-
fects on the brand profile. It shifts the peak position byt0
and broadens the band due to the diffusion process, which
is characterized byD. The solution by the CF to that model
is given as:

φ(ω) = exp

[
n

1 − iωτs
− n

]
= exp

[
iωnτs

1 − iωτs

]
(57)

The corresponding band profile can simply be calculated by
an inverse Fourier transform

c(t) = e−t/τs−n

√
n

tτs
I1

(√
4nt

τs

)
(58)

To obtain the solution with the conventional macroscopic
model, we writeD = 0 in Eq. (45)and solve the PDE as
before. The solution is:

c̃(s) = exp

[
− sNm

kd + s
− st0

]
(59)

In order to compensate for the mobile phase hold-up time,
we have to shift the peak by−t0. To do so, we multiplỹc(s)
by est0 to get:

c̃(s) = exp

[
− sNm

kd + s

]
= exp

[
Nm

1 + s/kd
− Nm

]
(60)

The inverse Laplace transform of this solution is

c(t) = e−tkd−Nm

√
Nmkd

t
I1

(√
4Nmkdt

)
(61)

We can see again that the band profiles expressed by the mi-
croscopic and macroscopic approaches (Eqs. (58) and (61))
are completely identical sinceτs = 1/kd andn = Nm.

3. Conclusions

In this study we have reconsidered the stochastic–
dispersive model for chromatography, which is a micro-
scopic model established at molecular level. The model
is composed in two parts. The migration of the so-
lute molecules in the mobile phase is modeled with a
one-dimensional random walk and this random migra-
tion is combined with a stochastic adsorption–desorption
process.

In Eq. (33)an analytical solution in the Fourier domain
is given for band profiles due to the stochastic–dispersive
model of chromatography. From that solution all the mo-
ments of the peak can be calculated, or by a numerical in-
verse Fourier transformation, the chromatogram can be ob-
tained. To ease the calculation of the inverse Fourier trans-
form, the real and imaginary parts of the complex function
φR(ω) are reported inAppendix B.

Although the model was developed here for homogeneous
adsorption–desorption kinetics, it is rather simple to apply
the stochastic–dispersive model to heterogeneous surfaces
with any kind of complexity. To achieve that,φS(ω) (see
Eq. (28)) should be replaced by the proper CF of the het-
erogeneous kinetics. This procedure is described in detail
elsewhere[14,17].

Our results show that the band profile calculated by the
stochastic–dispersive model for chromatography is com-
pletely identical to the one obtained by the conventional
lumped kinetic model. Thus, the kinetic models—either
microscopic, or macroscopic—are equivalent. Furthermore,
other macroscopic kinetic models, such as the general
rate model or the lumped pore model are also equivalent
in linear chromatography with the lumped kinetic model
[38]. Thus, a general correspondence is found among the
kinetic models. The modeling of the chromatographic pro-
cess at molecular level gains importance with the spread of
nanoscale separations.

It is discussable whether the equivalence we found is
due to the rather similar physical–chemical conditions we
have assumed in the two models. It is important to note,
however, that—besides the modeling of the mobile phase
dispersion with the first passage time distribution—the
exponential distribution for the sojourn times and the
Poisson distribution for the number of adsorption events
are the fine details that make the present microscopic
model equivalent to the macroscopic lumped kinetic
model.
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Appendix A. Nondestructive detector

The band profile in the case of a nondestructive detector
is obtained if not the first-passage distribution but the proba-
bility distribution of a diffusing molecule used in the present
model to describe the mobile phase process. In this instance
the following function (obtained asEq. (10)) is used in the
derivation of the model instead the one given inEq. (18):

f(t) = u√
4πDt

exp

[
− (L − ut)2

4Dt

]
(A.1)

The CF of this distribution is

φm(ω) =
(

1 − 2iωt0

N

)−1/2

exp

[
Nd

(
1 −

√
1 − 2iωt0

Nd

)]

(A.2)

Therefore, instead of(33) we obtain the following CF for
the elution time distribution

φR(ω)=exp[Nd(1−√
1−(2iω/Nd)((nτs/1−iωτs) + t0))]√

1 − (2iω/Nd)((nτs/1 − iωτs) + t0)

(A.3)

The first moment, the second central moment, and the col-
umn efficiency we obtain when nondestructive detector are
as follows:

µ1 = Nd + 1

Nd

nτt (A.4)

µ′
2 = 2

Nd + 1

Nd

nτ2
s + Nd + 2

N2
d

n2τ2
t (A.5)

1

N
= Nd + 2

(Nd + 1)2
+ Nd

Nd + 1

2

n

(
τs

τt

)2

(A.6)

These expression are slightly different fromEqs. (40)to (42).
But since the value ofNd is usually very large (Nd > 104),
practically no difference is seen betweenEqs. (40)–(42)and
Eqs. (A.4)–(A.6).

Appendix B. The real and imaginary parts of the CF

The real and imaginary parts of the complex function
φR(ω) (seeEq. (33)) are required when one uses a software
or programming language that cannot represent complex
numbers. The following formulas can be used to evaluate
the real and imaginary parts of the CF:

RφR(ω) = exp

[
Nd

(
1 −

√
p + q

2

)]
cos

Nd
√

p − q

2
(B.1)

IφR(ω) = −exp

[
Nd

(
1 −

√
p + q

2

)]
sin

Nd
√

p − q

2
(B.2)

where

p =
√√√√q2 + 16ω2

N2
d

(
t0 + nτ

1 + ω2τ2

)2

(B.3)

q = 2 + 4ω2nτ2

Nd(1 + ω2τ2)
(B.4)
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